Automatic Heap Layout
Manipulation

SeanHeelan
University of Oxford
https://sean.heelan.id@seanhn/ sean@vertex.re

https://sean.heelan.io/

22/06/2018 Automatic Heap Layout Manipulatierean Heelan

22/06/2018 Automatic Heap Layout Manipulatierean Heelan

22/06/2018 Automatic Heap Layout Manipulatierean Heelan

Introduction

Background

A2 KIFa Aa | WKSI LIQK
Aly T NBF 2F | LINPIN)IYQE YSY2ZNE GHKAOK
to dynamic memory allocation requests e.g. calls to malloc

A Subdivided into areas of memory that are
AWAY dzaSQ Y [/ dINNByGtfteé o06SAY
APTFNBESQ Y ' @grAflofS G2 &aSN

3 dzaSR 02 auzNEB
WAOS NBljdzSaua 7T

Background

APhysical vs Logical layout

At KEaAoOlf flreéz2dziy ¢KS fléz2dzi 2F o0dzF¥
by its address

ALogical layout: The layout of buffers in the data structures used by the
allocator that determine the order in which free buffers are used to service
allocation requests

A e.g. An allocator might use a list to store the addresses of free buffers and the ordering
of that list determines the order in which those buffers will be used to service allocation
requests

Logical Layout Controls Physical Layout

HE: 32 16 2 | g |

0x1000 0x2000 0x3000

Logical Layout Controls Physical Layout

HE: 32 16 2 | g |

0x1000 0x2000 0x3000

Free32 = [0x3000, 0x2000, 0x1000]

|| c | | B 16 | | A g

22/06/2018 Automatic Heap Layout Manipulatiersean Heelan

Logical Layout Controls Physical Layout

T N

0x1000 0x2000

X
Free32 = [0x3000, 0x2000, 0x1000]
Ll ¢ | | & |
Free32 = [0x1000, 0x3000, 0x2000] VS
Ll A | | ¢ |
Free32 = [0x1000, 0x2000, 0x3000] VS
Ll A | | B

16

16

16

16

[]

32

0x3000

22/06/2018 Automatic Heap Layout Manipulatiersean Heelan

10

Background

AAllocators are software that manage heap space and are intended to
be treated as a blackox by applications

Ai.e. Internally an allocator can use whatever data structures and algorithms it
wants to manage the heap

ATo predict the physical heap layout after a series of allocations and
frees one needs to know th&arting state the series ointeractions
and theimplementation detalls of the allocator

Motivation

AAssume we have
AThe ability to allocate a buffer containing a function pointer on the heap
AThe ability to trigger a heap based buffer overflow

Al 26 R2 6S KA2FO1l OGKS FLLIX AOFGAZ2

Allocate Object Containing Function Pointer

Allocate Overflow Source Buffer

Q0B Write Src Function Pointer

—

void bad() { void good() {

22/06/2018 Automatic Heap Layout Manipulatiersean Heelan

14

Trigger Overflow to Corrupt Pointer

[] [0OB Wite Src| Function Pointer

void bad() { void good() {

22/06/2018 Automatic Heap Layout Manipulatiersean Heelan

15

22/06/2018

|00B Write Sre] Function Pointer | | L

—

void bad() { void good() {

Automatic Heap Layout Manipulatiertsean Heelan 16

22/06/2018 Automatic Heap Layout Manipulatierean Heelan 17

Problem Overview

The Heap Layout Problem

ASource buffers

AThe buffer from which the overflow or underflow originates once the
vulnerabillity is triggered

ADestination bufferD
AThe buffer which we wish to corrupt once the vulnerability is triggered

AThe Heap Layout Problem

APositionS relative toD such that

A addressof(S) 1 addressof(D) = X

A Where X is the distance S must be from D in order for the vulnerability to corrupt the
desired offset in D

A e.g. to search for an input to position S and D immediately adjacent to each other X is set
to 0

Problem Setting & Restrictions

ADeterministic allocator
ACKS Fff20F02NQa O0SKI@A2dzNJ Ydzad 0S RSGS
A Holds for a significant number of allocators, elgnallog tcmalloc
A Some notable exceptions, ejgmallog Windows system allocator

AKnown starting state

A Attacker must be able to determine the starting state of the heap, or (re)set it to a
known state

A More significant restriction. Holds for many locals, and some remdliestsidesf
the attacker can trigger the creation of a new process/heap with a known
Initialisation sequence.

ANo other actors interacting with the allocator, or the processes address
space, at the same time (or if there is then their actions are deterministic)

Problem Variants

22/06/2018

l

Det + Known

Non-Det + Known

l

Det + Unknown

>

Non-Det + Unknown

Automatic Heap Layout Manipulatiersean Heelan

21

Problem Variants

l - I Det + Known /‘ l

22/06/2018

Non-Det + Known

Det + Unknown

>

Non-Det + Unknown

<

Automatic Heap Layout Manipulatiertsean Heelan

22

Challenges to Automatic Solutions

AAllocators do not provide an API to specify relative positioning

Challenges to Automatic Solutions

AAllocators do not provide an API to specify relative positioning

AAllocators are designed to optimise different measures of success and
thus utilise a diverse array of data structures and algorithms

Challenges to Automatic Solutions

AAllocators do not provide an API to specify relative positioning

AAllocators are designed to optimise different measures of success and
thus utilise a diverse array of data structures and algorithms

AApplications do not typically expose a direct interface with the
allocator they use

Challenges to Automatic Solutions

AAllocators do not provide an API to specify relative positioning

AAllocators are designed to optimise different measures of success and
thus utilise a diverse array of data structures and algorithms

AApplications do not typically expose a direct interface with the
allocator they use

ALYUGSNY OQuAzZzy a a 6KAOK Oly
FNBE 2FUSy fAY Gl NA2dza &1

Challenges to Automatic Solutions

AAllocators do not provide an API to specify relative positioning

AAllocators are designed to optimise different measures of success and
thus utilise a diverse array of data structures and algorithms

AApplications do not typically expose a direct interface with the
allocator they use

ALY G SNI OlGA2y aS81jdSy08a 6KAOK OFy
FNBE 2F0SYy fAYAUSR AY O NA2dza &1

AThe search space across all interaction sequences is usually
astronomically large

SIEVE

An Evaluation Framework for Solutions to the Heap Layout Problem

22/06/2018 Automatic Heap Layout Manipulatiertsean Heelan

28

Automatic Heap Layout Manipulation

AOn real targets, automatic heap layout manipulation involves
solutions to a number of distinct problems
1. CA3dzNBE 2dzi K2g (2 AYUSNI OO oA0K K
2. Figure out how to allocate interesting corruption targets on the heap
3. Figure out how to solve the heap layout problem

AWe can address all three of these problems separately

ASIEVE is a framework for constructing synthetic benchmarks for the
heap layout problem, and evaluating solutions

The Heap Layout Problem

AUnknown complexity class*

AHas aspects which are similar to a number of problems that are known to be
NP-hard

Ae.g. the coin problem, subset sum problem, knapsack problem

Alf it is NPhard then no efficient algorithm

ABut, plenty of such problems where good enough algorithms can be built for
real world application (e.g. SAT)

ASIEVE allows us to investigate the problem, and solutions, while
ignoring the extra engineering involved in addressing real targets

* Apologies forthe hand | Ay IS Abodlsi 2y Yeé ¢2

SIEVE

ATwo components

ASIEVE driver

A A program which links with any allocator exposing the standard
malloc/free/callod reallocinterface

A Takes as input a series of directives

A <malloc size ID>, <free ID¥stsize>, sndda A1 SH X
A Translates the directives into function calls on the allocator
A Outputsaddressof(fst) 7 addressof(snd)

ASIEVE framework

A Python API for managing different experimental configurations, implementing a search
algorithm, launching the driver and managing interaction with it

Creating Benchmarks in SIEVE

AA heap layout problem is parameterised by the following
AThe allocator
AThe starting state of the heap
AThe available interaction sequences with the allocator which can be triggered
AThe interaction sequence to allocate the source buffer
AThe interaction sequence to allocate the destination buffer
AThe temporal order in which the source and destination must be allocated

ASIEVE provides mechanisms for controlling each of these aspects
when creating a benchmark

Example Benchmark

AAllocator=dimalloc2.8.6

AStartingStatePythonInit
AAllocSequenceg[malloc_16]], [malloc_32, malloc_32]]
AFreeSequenceg[free 0 0], [free 1 1, free 1 0]
AFstSequencelmalloc_16]

ASndSequencdmalloc_16]

AOrder=Fst Snd

Example Benchmark

AAllocator=lmalloc2.8.6

AStartingStatePythonInit
AAllocSequenceg[malloc_16]], [malloc_32, malloc_32]]
AFreeSequenceg[free 0 0], [free 1 1, free 1 0]
AFstSequencelmalloc_16]

ASndSequencdmalloc_16]

AOrder=Fst Snd

Example Benchmark

AAllocator=dimalloc2.8.6

AStartingStatePythonlInit
AAllocSequenceg[malloc_16]], [malloc_32, malloc_32]]
AFreeSequenceg[free 0 0], [free 1 1, free 1 0]
AFstSequencelmalloc_16]

ASndSequencdmalloc_16]

AOrder=Fst Snd

Example Benchmark

AAllocator=dimalloc2.8.6

AStartingStatePythonInit
AAllocSequences][malloc_16]], [malloc_32, malloc_32]]
AFreeSequenced[free 0 0], [free 1 1, free 1 0]]
AFstSequencelmalloc_16]

ASndSequencdmalloc_16]

AOrder=Fst Snd

Example Benchmark

AAllocator=dimalloc2.8.6

AStartingStatePythonInit
AAllocSequenceg[malloc_16]], [malloc_32, malloc_32]]
AFreeSequenceg[free 0 0], [free 1 1, free 1 0]
AFstSequence[malloc_16]

ASndSequencelmalloc_16]

AOrder=Fst Snd

Example Benchmark

AAllocator=dimalloc2.8.6

AStartingStatePythonInit
AAllocSequenceg[malloc_16]], [malloc_32, malloc_32]]
AFreeSequenceg[free 0 0], [free 1 1, free 1 0]
AFstSequencelmalloc_16]

ASndSequencdmalloc_16]

AOrder=fFst Snd

Evaluating Algorithms with SIEVE

AA search algorithm in SIEVE is responsible for constructing candidate
solutions,

Ae.g. a sequence of allocation and free requests to be passed to the driver

ASearch algorithm can be agnostic to the benchmark configuration

Almplemented using the SIEVE API such that it can run on arbitrary allocators
and starting states, and with whatever interaction sequences are made
avallable

ASIEVE then provides a harness for executing the defined search
algorithm on a series of benchmarks

SIEVE

AppendAllocSequence

3

malloc(16);

avrlibc

InitCand%date AppendFreeSequence
GetStartingState AppendFstSequence
Execute AppendSndSequence
SIEVE API
v] 2
malloc 16 1
malloc 32 2 .
free 2
Search fst 16 SIEVE ‘
Algorithm > Driver
snd 16
A .
A \—/—\
addressof (fst) - addressof (snd)
4
22/06/2018 Automatic Heap Layout Manipulatiertsean Heelan

tcmalloc

dimalloc

40

Algorithms for the Heap Layout
Problem

Random Search

ADespite astronomical search space, the solution space has a lot of
symmetry

AWe only care about relative positioning for the source and destination, not
absolute positioning

A2 S R2y Qi OFNB Fo62dzi 0KS LRAAGAZYAYy T
AWe can guide the search

Ae.g. by having a higher probability of selecting interaction sequences
containingallocsthan frees (as filing chunks is often quite useful)

ARandom search requires little effort to implement
AEven if it only works sometimes they payoff would be worthwhile

Random Search in SIEVE

1: function SEARCH(g,d,m,r)

2 fori<0,g—1do

3 cand < ConstructCandidate(m,r)
4: dist < Execute(cand)

5: if dist = d then

6: return cand

7 end if

8 end for

9: return None

10: end function

11: function CONSTRUCTCANDIDATE(m, r)

12: cand <— InitCandidate(GetStartingState())
13: len < Random(1,m)

14: fstldx <— Random(0,len — 1)

15: fori< 0,len—1 do

16: if i = fstldx then

17: AppendF stSequence(cand)
18: else if Random(1,100) < r then
19: AppendAllocSequence(cand)
20: else

21: AppendFreeSequence(cand)
22: end if

23: end for

24: AppendSndSequence(cand)

25: return cand

26: end function

Evaluatiory Benchmark Configuration

AAllocators
Atcmalloc(v2.6.1) dimalloc(v2.8.6) avrlibc(v2.0)

AStarting states

A Captured the allocator interactions generated during tartup of Python
and Ruby, as well as interactions between PHP and the two allocators it uses

ASource and destination sizes
AThe cross product of 8, 64, 512, 4096, 16384, 65536

ASource/Destination order

AFor each pair of sizes (x, y) run an experiment where x must be allocated
temporally first and an experiment where y must be allocated temporally first

Evaluatiory Benchmark Configuration

ANoise

A Often no way to trigger a single allocator interaction at a time

AE.qg. to allocate something of size 8 maybe we have to trigger the sequence
[malloc(8); malloc(16); malloc(16)]

ACKS &aSO2yR (g2 Itft20FGA2ya INBE Wy2A
difficult to solve

AWe experiment with 0, 1 and 4 noisy allocations appended onto the
sequences which allocate the source and destination

Evaluatiory Benchmark Configuration

ASo, in total we have 2592 (3 * 4 * 36 * 2 * 3) benchmarks
A3 allocators, 4 starting states, 36 size pairs, 2 temporal orders, 3 noise variants

AMaximum candidates per benchmark set to 500,000
ATranslates to a maximum time per benchmark of about 15 minutes

AThis is quite short but, as we have 2592 benchmarks, it is the max feasible
value given our computational resources (still takes 3 days to run everything
on 40 cores =/)

ALT dzaASR WF¥2NJ NBIf QX ¢6KSYy 2yS 2yieée y
following results would be even better as more time can be given to the
problem

Evaluationr Random Search

ATable presents a summary of
experiments across all
source/destination size
combinations

ANatural

A Given a size pair (%, y), with the
constraint that x must be allocated
temporallybeforey, place x physical
beforey in memory

AReversed

A Given a size pair (X, y), with the
constraint that x must be allocated
temporallybeforey, place x physical
after y in memory

